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(D1) Binary Pulsar
Through systematic searches during the past decades, astronomers have found a large number of
millisecond pulsars (spin period < 10 ms). Majority of these pulsars are found in binaries, with
nearly circular orbits.

For a pulsar in a binary orbit, the measured pulsar spin period (P ) and the measured line-of-sight
acceleration (a) both vary systematically due to orbital motion. For circular orbits, this variation
can be described mathematically in terms of orbital phase φ (0 ≤ φ ≤ 2π) as,

P (φ) = P0 + Pt cosφ where Pt =
2πP0r

cPB

a(φ) = −at sinφ where at =
4π2r

P 2
B

where PB is the orbital period of the binary, P0 is the intrinsic spin period of the pulsar and r is
the radius of the orbit.

The following table gives one such set of measurements of P and a at different heliocentric epochs,
T , expressed in truncated Modified Julian Days (tMJD), i.e. number of days since MJD =
2,440,000.

T P a
No. (tMJD) (µs) (m s−2)

1 5740.654 7587.8889 −0.92± 0.08
2 5740.703 7587.8334 −0.24± 0.08
3 5746.100 7588.4100 −1.68± 0.04
4 5746.675 7588.5810 +1.67± 0.06
5 5981.811 7587.8836 +0.72± 0.06
6 5983.932 7587.8552 −0.44± 0.08
7 6005.893 7589.1029 +0.52± 0.08
8 6040.857 7589.1350 +0.00± 0.04
9 6335.904 7589.1358 +0.00± 0.02

By plotting a(φ) as a function of P (φ), we can obtain a parametric curve. As evident from the
relations above, this curve in the period-acceleration plane is an ellipse.

In this problem, we estimate the intrinsic spin period, P0, the orbital period, PB, and the orbital
radius, r, by an analysis of this data set, assuming a circular orbit.

(D1.1) 7Plot the data, including error bars, in the period-acceleration plane (mark your graph as
“D1.1”).

Solution:

Graph Number : D1.1
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• Plot uses more than 50% of graph paper: 0.5

• Axes labels (P and a): 0.5

• Dimensions of axes: 0.5

• Ticks and values on axes (or scale written explicitly): 0.5

• Points correctly plotted:
Points plotted 9 8 7 6 5 < 5

Marks given 4.0 3.5 3.0 2.0 1.0 0

Correctness of points: deduction of 0.5 for each wrong point.

• Errorbars on points (at least 5): 1.0

(D1.2) 2Draw an ellipse that appears to be a best fit to the data (on the same graph “D1.1”).

Solution:

See above

• Elliptical curve with visual best fit: 1.0

• Curve symmetric about a = 0 line: 0.5
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• Curve symmetric about some value of P (P ≈ 7588.48): 0.5

(D1.3) 7From the plot, estimate P0, Pt and at, including error margins.

Solution:

Values are determined from lengths of axes of ellipse and mid-point of P -axis.

Error margins may be determined by estimating extreme ellipses covering the points
with errorbars. Any reasonable method of estimating error margins will be accepted.

2Pt = (1.34± 0.04) µs [(13.4± 0.4) cm on graph]

Pt = (0.67± 0.02) µs 2.0

P0 = (7588.48± 0.02) µs 2.0

2at = (3.42± 0.12) m s−2 [(17.1± 0.6) cm on graph] 3.0

at = (1.71± 0.06) m s−2

• Marking table:
Parameter Half credit Full credit Half credit

Minimum Minimum Maximum Maximum

Pt(µs) 0.59 0.63 0.71 0.75
δPt(µs) 0.01 0.02 0.04 0.05

P0(µs) 7588.38 7588.43 7588.53 7588.58
δP0(µs) 0.01 0.02 0.04 0.05

at(m s−2) 1.61 1.65 1.77 1.81
δat(m s−2) 0.04 0.05 0.07 0.08

• Wrong values due to wrong/poor plot/fit in (D1.1) and (D1.2) WILL
BE penalised.

• Error estimation is based on graph drawing. Quoted values corre-
spond to the envelope of possible ellipses drawn to include all points
with errorbars. Any reasonable method to estimate error to be given
credit.

(D1.4) 4Write expressions for PB and r in terms of P0, Pt, at.

Solution:

We can easily recover the orbital period (PB) and the radius of the orbit (r) in a
circular orbit:

at =
4π2

P 2
B

r

∴ r =
P 2
Bat

4π2
1.0

Pt =
2πP0

PB
× r

c

=
2πP0

PBc
×
P 2
Bat

4π2
=
P0PBat

2πc
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∴ PB =
Pt

P0

2πc

at
1.0

r =
at

4π2

(
Pt

P0

2πc

at

)2

1.0

∴ r =

(
Pt

P0

)2 c2

at
1.0

Alternative algebraic routes accepted. Each of PB and r carry 2.0 marks.

(D1.5) 6Calculate approximate value of PB and r based on your estimations made in (D1.3),
including error margins.

Solution:

PB =
Pt

P0

2πc

at

=
0.67

7588.48
× 2π × 2.998× 108

1.71
s

= 96 260 s = 1.125 70 d 1.0

∆PB = PB

√(
∆Pt

Pt

)2

+

(
∆P0

P0

)2

+

(
∆at
at

)2

1.0

= 1.12570×

√(
0.02

0.67

)2

+

(
0.02

7588.48

)2

+

(
0.06

1.71

)2

d

= 1.12570× 0.0461 ' 0.052 d

∴ PB = (1.13± 0.05) d 1.0

r =

(
Pt

P0

)2 c2

at

=

(
0.67

7588.48

)2

×
(
2.998× 108

)2
1.71

m

∴ r = 4.097 39× 108 m = 2.738 90× 10−3 AU 1.0

∆r = r

√(
2∆Pt

Pt

)2

+

(
2∆P0

P0

)2

+

(
∆at
at

)2

1.0

= 2.738 90× 10−3 ×

√(
2× 0.02

0.67

)2

+

(
2× 0.02

7588.48

)2

+

(
0.06

1.71

)2

AU

= 2.738 90× 10−3 × 0.069 25 AU ' 0.19× 10−3 AU

r = (2.74± 0.19)× 10−3 AU 1.0

Errors in PB and r can be also estimated as maximum possible (worst case) error.
In such case, errors would be about 1.5 times the standard error calculated above
(δPB = 0.07, δr = 0.25).

(D1.6) 4Calculate orbital phase, φ, corresponding to the epochs of the following five observations
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in the above table: data rows 1, 4, 6, 8, 9.

Solution:

Using these newly determined orbital parameters, we can calculate the angular orbital
phase for each data point, i.e., for each pair of acceleration and period measured (P ,
a).

φ = tan−1
(
− a
at

Pt

P − P0

)
Care has to be taken to choose the value of the phase from among φ, π ± φ, 2π − φ,
depending on the sign of cosφ and sinφ.

Sr. T P a φ
no. (tMJD) (µs) (m s−2)

1 5740.654 7587.8889 −0.92 148.62◦

4 5746.675 7588.5810 +1.67 278.77◦

6 5983.932 7587.8552 −0.44 164.57◦

8 6040.857 7589.1350 +0.00 0.00◦

9 6335.904 7589.1358 +0.00 0.00◦

• Credit for each correct value: 1.0 for first three, 0.5 for last two.

• Credit for π ± φ or 2π − φ is 0.5 per value.

• All values wrong due to wrong expression for φ gets a maximum of
1.0 mark.

• Values in radians accepted.

(D1.7) Refine the estimate of the orbital period, PB, using the results in part (D1.6) in the
following way:

(D1.7a) 2First determine the initial epoch, T0, which corresponds to the nearest epoch
of zero phase before the first observation.

Solution:
T1 − T0
PB

=
φ1
2π
⇒ T0 = T1 −

φ1
2π
PB 1.0

T0 = 5740.654− 148.62◦

360◦
× 1.12570 tMJD

T0 = 5740.189 tMJD 1.0

Tolerance: ±0.002 tMJD. Using P0 instead of PB gets zero.

(D1.7b) 7The expected time, Tcalc, of the estimated phase of each observation is given by

Tcalc = T0 +

(
n+

φ

360◦

)
PB,

where n is the number of full cycle of orbital phases elapsed between T0 and
Tcalc. Estimate n and Tcalc for each of the five observations in part (D1.6). Note
down difference TO–C between observed T and Tcalc. Enter these calculations
in the table given in the Summary Answersheet.

Solution:
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Tcalc = T0 +

(
n+

φ

360◦

)
PB

where n = Integer part of [(T − T0)/PB].

Sr. T φ n Tcalc TO–C

No. (tMJD) (MJD) (days)

1 5740.654 148.62◦ 0 5740.654 0.000

4 5746.675 278.77◦ 5 5746.689 −0.014

6 5983.932 164.57◦ 216 5983.855 0.077

8 6040.857 0.00◦ 267 6040.751 0.106

9 6335.904 0.00◦ 529 6335.684 0.220

Deduction for each wrong/missing value of n, Tcalc and TO–C: 0.5
No double penalty in one row.

(D1.7c) 4Plot TO–C against n (mark your graph as “D1.7”).

Solution:
Graph Number : D1.7

• Plot uses more than 50% of graph paper: 0.5

• Axes labels (TO–C and n) including dimensions: 0.5

• Ticks and values on axes (or scale written explicitly): 0.5

• Points correctly plotted: 0.5 for each point

• Goodness of linear fit credited in next part

(D1.7d) 7Determine the refined values of the initial epoch, T0,r, and the orbital period,
PB,r.
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Solution:
A linear fit to the plot of TO–C vs n gives the offset of period per cycle
(slope) and the shift in the zero-phase point (intercept). 2.0
This concept, which may be evident in the subsequent calculation,
gains the credit, explicit statement is not necessary.
From a linear fit,

Slope = 0.000 43 d/n Intercept = −0.010 d 3.0

• Credit for good visual linear fit: 1.0

• Correct values of slope and intercept: 1.0 each

• Tolerance: ±0.00002 in slope and ±0.002 in intercept.

T0,r = 5740.189− 0.010 = 5740.179 tMJD 1.0

PB,r = (1.12570 + 0.00043) d

= 1.126 13 d

PB = 1.1261 d 1.0

Incorrect sign of correction applied carries penalty of 0.5 for each
quantity.
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(D2) Distance to the Moon
Geocentric ephemerides of the Moon for September 2015 are given in the form of a table. Each
reading was taken at 00:00 UT.

Date R.A. (α) Dec. (δ) Angular Size (θ) Phase (φ) Elongation
h m s ◦ ′ ′′ ′′ of Moon

Sep 01 0 36 46.02 3 6 16.8 1991.2 0.927 148.6◦W

Sep 02 1 33 51.34 7 32 26.1 1974.0 0.852 134.7◦W

Sep 03 2 30 45.03 11 25 31.1 1950.7 0.759 121.1◦W

Sep 04 3 27 28.48 14 32 4.3 1923.9 0.655 107.9◦W

Sep 05 4 23 52.28 16 43 18.2 1896.3 0.546 95.2◦W

Sep 06 5 19 37.25 17 55 4.4 1869.8 0.438 82.8◦W

Sep 07 6 14 19.23 18 7 26.6 1845.5 0.336 70.7◦W

Sep 08 7 7 35.58 17 23 55.6 1824.3 0.243 59.0◦W

Sep 09 7 59 11.04 15 50 33.0 1806.5 0.163 47.5◦W

Sep 10 8 49 0.93 13 34 55.6 1792.0 0.097 36.2◦W

Sep 11 9 37 11.42 10 45 27.7 1780.6 0.047 25.1◦W

Sep 12 10 23 57.77 7 30 47.7 1772.2 0.015 14.1◦W

Sep 13 11 9 41.86 3 59 28.8 1766.5 0.001 3.3◦W

Sep 14 11 54 49.80 0 19 50.2 1763.7 0.005 7.8◦ E

Sep 15 12 39 50.01 -3 20 3.7 1763.8 0.026 18.6◦ E

Sep 16 13 25 11.64 -6 52 18.8 1767.0 0.065 29.5◦ E

Sep 17 14 11 23.13 -10 9 4.4 1773.8 0.120 40.4◦ E

Sep 18 14 58 50.47 -13 2 24.7 1784.6 0.189 51.4◦ E

Sep 19 15 47 54.94 -15 24 14.6 1799.6 0.270 62.5◦ E

Sep 20 16 38 50.31 -17 6 22.8 1819.1 0.363 73.9◦ E

Sep 21 17 31 40.04 -18 0 52.3 1843.0 0.463 85.6◦ E

Sep 22 18 26 15.63 -18 0 41.7 1870.6 0.567 97.6◦ E

Sep 23 19 22 17.51 -17 0 50.6 1900.9 0.672 110.0◦ E

Sep 24 20 19 19.45 -14 59 38.0 1931.9 0.772 122.8◦ E

Sep 25 21 16 55.43 -11 59 59.6 1961.1 0.861 136.2◦ E

Sep 26 22 14 46.33 -8 10 18.3 1985.5 0.933 150.0◦ E

Sep 27 23 12 43.63 -3 44 28.7 2002.0 0.981 164.0◦ E

Sep 28 0 10 48.32 0 58 58.2 2008.3 1.000 178.3◦ E

Sep 29 1 9 5.89 5 38 54.3 2003.6 0.988 167.4◦W

Sep 30 2 7 39.02 9 54 16.1 1988.4 0.947 153.2◦W
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The composite graphic1 below shows multiple snapshots of the Moon taken at different times
during the total lunar eclipse, which occurred in this month. For each shot, the centre of frame
was coinciding with the central north-south line of umbra.

For this problem, assume that the observer is at the centre of the Earth and angular size refers to
angular diameter of the relevant object / shadow.

(D2.1) 3In September 2015, apogee of the lunar orbit is closest to
New Moon / First Quarter / Full Moon / Third Quarter.
Tick the correct answer in the Summary Answersheet. No justification for your answer
is necessary.

Solution:

From the table we see that the angular size of Moon is smallest close to the New
Moon day. Thus, the answer is New Moon . 3.0
Justification is NOT necessary for full credit.

(D2.2) 4In September 2015, the ascending node of lunar orbit with respect to the ecliptic is closest
to
New Moon / First Quarter / Full Moon / Third Quarter.
Tick the correct answer in the Summary Answersheet. No justification for your answer
is necessary.

Solution:

As there is an eclipse happening in this month, the lunar nodes are close to Full
Moon day and New Moon day. Next we notice that lowest declination of Moon is
just 18◦. This means that after the New Moon day, the orbit of Moon is above the
ecliptic. In other words, the ascending node is near the New Moon . 4.0
Justification is NOT necessary for full credit.

(D2.3) 4Estiamte the eccentricity, e, of the lunar orbit from the given data.

Solution:

The largest angular size of the Moon in the ephemerides is 2008.3′′ and the smallest
angular size is 1763.7′′. The distance is inversely proportional to the angular size.
Hence ratio of distance at perigee to the distance at apogee is:

Ratio =
rperigee
rapogee

= ��a0
1 + e

× 1− e
��a0

2.0

1Credit: NASA’s Scientific Visualization Studio
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∴
1− e
1 + e

=
1763.7

2008.3
= 0.87821

∴ e =
1− 0.87821

1 + 0.87821
= 0.064846

e ' 0.065 2.0

Rounding off is done to account for the fact that our data are not contin-
uous, hence exact angular sizes at perigee and apogee are not known.
A non-rounded answer will also receive full credit.

(D2.4) 8Estimate the angular size of the umbra, θumbra, in terms of the angular size of the
Moon, θMoon. Show your working on the image given on the backside of the Summary
Answersheet.

Solution:

The following construction is shown. 5.0

Only two chords are necessary to determine the centre.

The credit is divided in two parts for the drawing:

• Realisation that centre of umbra circle needs to be determined to
find θumbra: 1.5

• Accurate determination of centre of umbra circle by geometric con-
struction: 2.5
Determination of centre of hand-drawn circle: maximum 1.5
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• Measuring diameters of umbra and Moon: 0.5 each

By estimating approximate centre of the shadow in the image, we find out,

θumbra

θMoon
=
dumbra

dMoon
2.0

=
9.1

3.3
= 2.76

∴ θumbra ' 2.76θMoon 1.0

Acceptable range: ±0.10.

(D2.5) 9The angle subtended by the Sun at Earth on the day of the lunar eclipse is known to be
θSun = 1915.0′′. In the figure below, S1R1 and S2R2 are rays coming from diametrically
opposite ends of the solar disk. The figure is not to scale.

Moon
Earth

S1

R1
S2

R2
θSun

Calculate the angular size of the penumbra, θpenumbra, in terms of θMoon. Assume the
observer to be at the centre of the Earth.

Solution:

The following diagram needs to be drawn.

O

Moon’s path

S1

J

A

S2
B

E

R⊕

P

Q

θ1

θ2

θSun

Angular size of umbra is θumbra = 2]BOQ
Angular size of penumbra is θpenumbra = 2]AOQ

We have

QA = QP + PA

= OE + PE tan θ1
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≈ R⊕ + dMoonθ1 since PA� PE

≈ R⊕ + dMoon
θSun

2
since θ1 ≈ θ2 ≈ θSun/2 2.0

and

QB = QP − PB
= OE − PE tan θ2

≈ R⊕ − dMoonθ2

≈ R⊕ − dMoon
θSun

2
2.0

∴ θpenumbra = 2]AOQ = 2 tan−1
(
QA

OQ

)
≈ 2

QA

OQ
since QA� OQ

= 2
R⊕ + dMoon

θSun
2

dMoon
=

2R⊕
dMoon

+ θSun 1.0

and

θumbra = 2]BOQ = 2 tan−1
(
QB

OQ

)
≈ 2

QB

OQ

= 2
R⊕ − dMoon

θSun
2

dMoon
=

2R⊕
dMoon

− θSun 1.0

Subtracting,

θpenumbra − θumbra = 2θSun ⇒ θpenumbra = θumbra + 2θSun 1.0

We have,

θumbra = 2.76θMoon and θSun = 1915.0′′

From the given data, θMoon= 2008.3′′. 1.0
Therefore,

θpenumbra = 2.76θMoon + 2
1915.0

2008.3
θMoon

θpenumbra= 4.67θMoon 1.0

Acceptable range: 4.57θMoon to 4.77θMoon.

Alternative solution:

In the figure below, rays HEA and IFC are coming from one edge of solar disk
and rays HFD and GEB are coming from the opposite edge. The observer (O) is
assumed to be at the centre of the Earth. The Moon travels along the path ABCD
during the course of eclipse.
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O

Moon’s path

J
H

G

I

E

F

A

B

C

D

θSun

θSun θSun

θSun θSun

O

Moon’s path

J

E

F

A

B

C

D

θSun

θSun

θSun

From figure,

]AEB = ]GEH = ]HFI = ]DFC = ]EJF = θSun 3.0

θumbra = ]BOC = 2.76θMoon 1.0

θpenumbra = ]AOD 1.0

]AOD = ]AOB + ]BOC + ]COD

]AOB = ]AEB 1.0

]COD = ]CFD 1.0

θpenumbra ' ]AEB + θumbra + ]CFD

= 2θSun + 2.76θMoon = 2× 1915.0′′ + 2.76× 2008.3′′

θpenumbra = 9372.9′′ = 4.67θMoon 2.0

(D2.6) 5Let θEarth be angular size of the Earth as seen from the centre of the Moon. Calculate
the angular size of the Moon, θMoon, as would be seen from the centre of the Earth on
the eclipse day in terms of θEarth.

Solution:

From the Moon,

θEarth =
2R⊕
dMoon

1.0
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From part (D2.5),

θumbra + θpenumbra = 2θEarth 2.0

∴ θEarth =
θumbra + θpenumbra

2
=

2.76 + 4.67

2
θMoon = 3.72θMoon

θMoon= = 0.269θEarth 2.0

Alternative solution:

Let us say that the Moon is at position of B. Thus, angular size of Earth as seen
from this position will be, (see figure in the previous part)

θEarth = ]EBF = ]BFD 2.0

= ]BFC + ]CFD

' θumbra + θSun 1.0

The angular size of the Full Moon on 28 September as seen in the table is 2008.3′′.

θEarth = 2.76× 2008.3′′ + 1915.0′′ = 7453.0′′

θMoon = 0.269θEarth =
θEarth
3.72

2.0

(D2.7) 3Estimate the radius of the Moon, RMoon, in km from the results above.

Solution:

Thus, the radius of Moon will be,

RMoon =
R⊕
3.72

1.0RMoon =
6371

3.72

RMoon ' 1713 km 2.0

Acceptable range: ±20 km.

(D2.8) 4Estimate the shortest distance, rperigee, and the farthest distance, rapogee, to the Moon.

Solution:

The shortest and longest distances will be,

rperigee =
2× 1713× 206265

2008.3

rperigee = 3.52× 105 km 2.0

rapogee =
2× 1713× 206265

1763.7

rapogee = 4.01× 105 km 2.0

(D2.9) 10Use appropriate data from September 10 to estimate the distance, dSun, to the Sun from
the Earth.
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Solution:

Earth

E

Moon
M

Sun

S

Moon’s orbit

φS
φE

φM

On September 10, phase of Moon is 0.097 and elongation of Moon is 36.2◦. Angular
size of the Moon on this day is 1792.0′′. Therefore, distance to Moon (from Earth)
on September 10 is

dMoon,10 =
2× 1713× 206265

1792.0
= 3.94× 105 km 2.0

Let ]EMS = φM

]ESM = φS

]SEM = φE

∴ φE = 36.2◦ 1.0

phase =
1 + cosφM

2
2.0

∴ φM = cos−1 (2× phase − 1)

= cos−1 (2× 0.097− 1) = cos−1(−0.806)

= 143.71◦ 2.0

φS = 180◦ − φE − φM
= 180◦ − 36.2◦ − 143.71◦

= 0.09◦ 1.0

Now using sine rule,

dSun
dMoon,10

=
sinφM
sinφS

2.0

∴ dSun =
3.94× 108 × sin 143.71◦

sin 0.09◦

dSun = 1.48× 1011 m 1.0
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(D3) Type IA Supernovae
Supernovae of type Ia are considered very important for the measurements of large extragalactic
distances. The brightening and subsequent dimming of these explosions follow a characteristic
light curve, which helps in identifying these as supernovae of type Ia.

Light curves of all type Ia supernovae can be fit to the same model light curve, when they are
scaled appropriately. In order to achieve this, we first have to express the light curves in the
reference frame of the host galaxy by taking care of the cosmological stretching/dilation of all
observed time intervals, ∆tobs, by a factor of (1 + z). The time interval in the rest frame of the
host galaxy is denoted by ∆tgal.

The rest frame light curve of a supernova changes by two magnitudes compared to the peak in
a time interval ∆t0 after the peak. If we further scale the time intervals by a factor of s (i.e.
∆ts = s∆tgal) such that the scaled value of ∆t0 is the same for all supernovae, the light curves
turn out to have the same shape. It also turns out that s is related linearly to the absolute
magnitude, Mpeak, at the peak luminosity for the supernova. That is, we can write

s = a+ bMpeak ,

where a and b are constants. Knowing the scaling factor, one can determine absolute magnitudes
of supernovae at unknown distances from the above linear equation.

The table below contains data for three supernovae, including their distance moduli, µ (for the
first two), their recession speed, cz, and their apparent magnitudes, mobs, at different times. The
time ∆tobs ≡ t − tpeak shows number of days from the date at which the respective supernova
reached peak brightness. The observed magnitudes have already been corrected for interstellar as
well as atmospheric extinction.

Name SN2006TD SN2006IS SN2005LZ

µ (mag) 34.27 35.64

cz (km s−1) 4515 9426 12060

∆tobs (days) mobs (mag) mobs (mag) mobs (mag)

−15.00 19.41 18.35 20.18

−10.00 17.48 17.26 18.79

−5.00 16.12 16.42 17.85

0.00 15.74 16.17 17.58

5.00 16.06 16.41 17.72

10.00 16.72 16.82 18.24

15.00 17.53 17.37 18.98

20.00 18.08 17.91 19.62

25.00 18.43 18.39 20.16

30.00 18.64 18.73 20.48

(D3.1) 15Compute ∆tgal values for all three supernovae, and fill them in the given blank boxes
in the data tables on the BACK side of the Summary Answersheet. On a graph paper,
plot the points and draw the three light curves in the rest frame (mark your graph as
“D3.1”).

Solution:

Redshifts for the three supernovae are z1 = 0.0151, z2 = 0.0314 and z3 = 0.0402. 1.5

Filling in the three tables (∆tgal, third column) 3.5
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SN2006TD

∆tobs mobs ∆tgal ∆ts

(d) (mag) (d) (d)

−15.00 19.41 −14.78 −20.00

−10.00 17.48 −9.85 −13.34

−5.00 16.12 −4.93 −6.67

0.00 15.74 0.00 0.00

5.00 16.06 4.93 6.67

10.00 16.72 9.85 13.34

15.00 17.53 14.78 20.00

20.00 18.08 19.70 26.67

25.00 18.43 24.63 33.34

30.00 18.64 29.56 40.01

SN2006IS

∆tobs mobs ∆tgal ∆ts

(d) (mag) (d) (d)

−15.00 18.35 −14.54 −14.54

−10.00 17.26 −9.70 −9.70

−5.00 16.42 −4.85 −4.85

0.00 16.17 0.00 0.00

5.00 16.41 4.85 4.85

10.00 16.82 9.70 9.70

15.00 17.37 14.54 14.54

20.00 17.91 19.39 19.39

25.00 18.39 24.24 24.24

30.00 18.73 29.09 29.09

SN2005LZ

∆tobs mobs ∆tgal ∆ts

(d) (mag) (d) (d)

−15.00 20.18 −14.42 −17.03

−10.00 18.79 −9.61 −11.35

−5.00 17.85 −4.81 −5.68

0.00 17.58 0.00 0.00

5.00 17.72 4.81 5.68

10.00 18.24 9.61 11.35

15.00 18.98 14.42 17.03

20.00 19.62 19.23 22.70

25.00 20.16 24.03 28.38

30.00 20.48 28.84 34.06

Full marks of 3.5 for all correct values.
Penalty for incorrect values (3×7 independent values):
Incorrect 1-3 4-6 7-9 10-12 13-15 16-18 19-21

Deduction 0.5 1.0 1.5 2.0 2.5 3.0 3.5

The light curves in galaxy frame would appear as follows 10.0

Graph Number: D3.1

• Plot uses more than 50% of graph paper: 0.5
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• Both axes labels (∆tgal and mobs) present: 0.5

• Both dimensions of axes (days and mag) present: 0.5

• Ticks and values on axes (or scale written explicitly): 0.5

• Points correctly plotted:
All points correctly plotted: 5.0
Penalty for incorrect or missing points:
Incorrect 1 2-4 5-7 8-10 11-13 14-16 17-19 20-22 23-25 26-30

Deduction 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

• Smooth curve through points: 1.0 per curve

(D3.2) 5Take the scaling factor, s2, for the supernova SN2006IS to be 1.00. Calculate the scaling
factors, s1 and s3, for the other two supernovae SN2006TD and SN 2005LZ, respectively,
by calculating ∆t0 for them.

Solution:

From the graph D3.1, SN2006IS took 22.0 d to fade by 2 magnitudes.

That is, ∆t0(SN2006IS) = 22.0 d.

Similarly, ∆t0(SN2006TD) = 16.4 d.

And ∆t0(SN2005LZ) = 18.8 d.

Acceptable range: ±1.0 days 3.0

Thus, stretching factors for these two supernovae are

s1 =
22.2

16.4
= 1.354

s3 =
22.2

18.8
= 1.181 2.0

(D3.3) 14Compute the scaled time differences, ∆ts, for all three supernovae. Write the values for
∆ts in the same data tables on the Summary Answersheet. On another graph paper,
plot the points and draw 3 light curves to verify that they now have an identical profile
(mark your graph as “D3.3”).

Solution:

Filling the scaled values in the fourth column of the table (∆ts in table above) 3.5

Full marks of 3.5 for all correct values.
Penalty for incorrect values (3×7 independent values):
Incorrect 1-3 4-6 7-9 10-12 13-15 16-18 19-21

Deduction 0.5 1.0 1.5 2.0 2.5 3.0 3.5

The scaled light curves would appear as follows,

Graph Number: D3.3
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10.5

• Plot uses more than 50% of graph paper: 0.5

• Both axes labels (∆ts and mobs) present: 0.5

• Both dimensions of axes (days and mag) present: 0.5

• Ticks and values on axes (or scale written explicitly): 0.5

• Points correctly plotted:
All points correctly plotted: 5.0
Penalty for incorrect or missing points:
Incorrect 1 2-4 5-7 8-10 11-13 14-16 17-19 20-22 23-25 26-30

Deduction 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

• Smooth curve through points: 1.0 per curve

• The curves should show identical profiles. 0.5

(D3.4) 6Calculate the absolute magnitudes at peak brightness, Mpeak,1, for SN2006TD and
Mpeak,2, for SN2006IS. Use these values to calculate a and b.

Solution:

To get a and b,

Mpeak,1 = mpeak,1 − µ1 = 15.74− 34.27 mag

= −18.53 mag

Mpeak,2 = mpeak,2 − µ2 = 16.17− 35.64 mag

= −19.47 mag 2.0

∴ b =
s1 − s2

Mpeak,1 −Mpeak,2
=

1.354− 1

−18.53− (−19.47)
mag−1 =

0.354

0.94
mag−1
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b = 0.3762 mag−1 2.0

a = s2 − bMpeak,2 = 1− 0.3762× (−19.47) = 1 + 7.325

a = 8.325 2.0

No penalty for missing mag−1 in b.

(D3.5) 4Calculate the absolute magnitude at peak brightness, Mpeak,3, and distance modulus, µ3,
for SN2005LZ.

Solution:

s3 = a+ bMpeak,3

∴Mpeak,3 =
s3 − a
b

=
1.181− 8.325

0.3762
mag =

−7.144

0.3762
mag

Mpeak,3 = −18.99 mag 2.0

Distance modulus to SN2005LZ is

µ3 = mpeak,3 −Mpeak,3 = 17.58− (−18.99) mag

µ3 = 36.57 mag 2.0

(D3.6) 6Use the distance modulus µ3 to estimate the value of Hubble’s constant, H0. Further,
estimate the characteristic age of the universe, TH.

Solution:

Distance to SN2005LZ is

d3 = 10(µ3
5
+1)pc = 10(µ3

5
+1−6)Mpc

= 10( 36.57
5
−5)Mpc = 102.314Mpc

' 206 Mpc

H0 =
cz3
d3

=
12060

206
km s−1 Mpc−1

H0 = 58.5 km s−1 Mpc−1 4.0

TH =
1

H0
=

3.086× 1022

58.5× 103 × 3.156× 107
yr

TH = 16.7 Gyr 2.0

Extra factor of 2/3 allowed in the value of TH.


